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In order to integrate multiple sensor data into a 

single air picture, the individual sensor data must 
be expressed in a common coordinate system, free from 
errors due to site uncertainties, antenna 
orientation, and improper calibration of range and 
time.  The process of ensuring the requisite "error 
free" coordinate conversion of sensor data is called 
registration.  This paper develops a Generalized 
Least-Squares Estimation technique for sensor 
registration and compares quantitatively this 
technique with of some the standard methods in use 
today. 

1.  Background 

Modern Command and Control systems depend on a 
surveillance subsystem to provide an air situation 
picture on which decisions must be based.  In order 
to maintain an accurate, complete and current air 
picture, the surveillance subsystem will, in turn, 
depend on combinations of netted sensors to provide 
the raw data from which the air situation picture is 
developed.  To date, unfortunately, attempts to net 
multiple sensors into a single surveillance system 
have met with limited success, due in large part to 
the failure to register adequately the individual 
sensor (see Ref. [1]). 

Why the regis'tration of multiple sensor systems 
has been, in general, inadequate is not easily 
explained.  The problem does not seem to be 
understood or even recognized beyond a small circle 
of systems engineers at a few Government laboratories 
and aerospace companies.  Certainly it has not 
received the attention which, for example, the 
problem of tracking or state estimation has 
received.  Literally thousands of papers have been, 
published on Kaiman filtering; many excellent (as 
well as mediocre) texts have been written on the 
subject of optimal estimation.  Publications on the 
registration problem are limited to a few technical 
reports funded by various Department of Defense 
agencies.  Registration, it seems, has been an 
afterthought in most system efforts. 

The purpose of this paper is two-fold:  first, to 
define the registration problem in terms of the 
sources of registration error and their implication 
on multi-sensor target tracking; and, second, to 
provide a solution of the registration problem.  The 
solution of the problem discussed below is based on 
the techniques of multivariate statistical analysis. 
Thus, there is an obvious parallel between this 
solution to the registration problem and the Kaiman 
filter to the extent that both can be derived from 
the theory of Generalized Least-Squares Estimation. 
More importantly, however, the solution discussed 
below treats the problem with a similar level of 
detail and sophistication as has been applied to the 
tracking function. 

Since radars are still the primary sensors in use 
today, and since the problem of radar registration 
has not yet been resolved adequately, this paper will 
address the problem of radar registration only.  The 
same principles can be applied to sensor networks 
which include other kinds of sensors. 

2. The Registration Problem 

The fundamental problem in sensor netting to 
determine whether data reports from two or more 
remotely located sensors represent a common aircraft 
or a distinct aircraft.  Before this can be 
accomplished successfully, however, the individual 
sensor data must be expressed in a common coordinate 
system, free from errors due to site uncertainties, 
antenna orientation, and improper calibration of 
range and time.  The process of ensuring the 
requisite "error free" coordinate conversion of 
sensor data is called registration.  Thus, 
registration is an ABSOLUTE prerequisite for sensor 

netting. 

The major sources of registration error for 
radars are listed below in the left-hand column of 
Table 1, together with some possible corrective 
actions in the right-hand column. 

TABLE 1.  Registration Error Sources 

Error Source Corrective Measure 

Range: 
Offset 
Scale 
Atmospheric Refraction 

Test Target 

Tabular Corrections 

Azimuth 
Offset 

Antenna Tilt 

Solar Alignment; North 
Finders 

Elevation (3-D Radars): 
Offset 
Antenna Tilt 

Time: 
Offset 
Scale 

Radar Location: JITDS, PLRS, GPS, 
Satellite Survey 

Coordinate Conversations: 
Radar Plane 
System Plane 

DISTRIBUTION STATEMENT A 

Approved for public release; 

Source:  Fischer, Muehe, Cameron:  Registration 
ik Errors in a Netted Air Surveillance System (Ref. [1]). 
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Of the sources of registration error listed in 

Table 1, there are three sources which have proved to 
- be major problems in air defense systems; they are: 

(1) position of the sensor with respect to a "system" 
coordinate origin; (2) alignment of the antennas with 
respect to a common north reference (i.e., the 

azimuth offset error); and (3) range offset errors. 
The other errors may exist in the current radar 

systems; however, they have not been significant 

problems in the past.  As the radar technology 

improves, some of the other error sources may become 
significant factors. 

As suggested in Table 1, electronic position- 

location systems such as GPS or commercial satellite 
survey systems are available which can locate a 

position on the earth to within a maximum error of 

100 feet (or better).  This accuracy is certainly 

adequate for radar systems in which the standard 

deviation of the range measurement error is no better 
than 0.125 nmi.  The problem is now to deal with 
range and azimuth offset errors. 

The potential effects of range and azimuth offset 
errors are illustrated in Figure 1.  Registration 

errors are systematic measurement errors rather than 

random errors.  The figure illustrates the expected 
or average reports of a common target from two 

radars, each of which consistently reports (1) a 

range less than the true range by a fixed amount (the 
offset) and (2) an azimuth (measured clockwise from 

north) less than the true azimuth by a fixed offset. 
For any specific set of measurements, random 

measurement errors will be superimposed on the bias 
errors. 

3-  Registration Procedu 

RADAR 2 

RADAR 1 

f>e1 

=  TRUE TARGET POSITION 

=   RADAR 1 REPORTED POSITION (r,,0.) 

=   RADAR 2 REPORTED POSITION (r2,e2) 
=  AZIMUTH BIAS OF RADARS 1, 2 
=   RANGE BIAS OF RADARS 1, 2 

Figure 1. Range and Azimuth Registration Errors. Registration 

errors introduce measurement biases into the system; this will result 

m degraded tracking performance or even in the initiation of multiple 
tracks for a single target. 

System registration may be considered as a two 
phase process:  sensor initialization and relative 

alignment.  The objective of the initial registration 
procedure is to register, with respect to absolute 
coordinates, each sensor independently.  Once the 

position of the sensor has been estimated, the range 

measurements have been calibrated, and an initial 
alignment with respect to true north has been 

completed, the procedures for relative alignment of 
the system sensors can be initiated.  The 

initialization procedures generally are 

• straightforward; the REAL registration problem is the 
relative alignment of the system sensors. 

Techniques for relative registration depend on 
common targets, preferably targets of convenience 

rather than controlled flights.  Generally, data is 

collected until a sufficient number of paired reports 
have been obtained, and then a set of bias 

corrections are computed.  The usual techniques for 

obtaining the solutions is either to formulate the 

problem as an ordinary (or unweighted) least-squares 
estimation (LSE) problem or to rely on simple 

averaging to remove the random error components.  The 
major limitation of either approach is that each 

radar report is treated equally when, in fact, the 

measurement (i.e., observation) errors are a function 
of both the individual radar parameters and target 
range. 

The least-squares approach is commonly employed 
in the NATO air defense systems.  This approach 

obtains a relative solution for a subordinate radar 
with respect to a master radar, which is assumed to 

be perfect.  Since there is no particular reason to 
believe that the master radar is "perfect", this 

approach can only verify that the initial alignment 
is adequate; estimates of non-zero biases merely 

indicate that there is a registration error.  Range 
offset errors, in particular, are not relative; a 

bias at the master site cannot be transferred to the 
subordinate site. 

The alternative approach is the simple averaging 
process which is employed in the US-Canadian Joint 

Surveillance System (JSS) for North America and in 
the FAA National Air Space System (NAS) (for enroute 
air traffic control).  The derivation of this 

technique assumes a symmetric distribution of points 
about the line joining the two radars.  Consequently, 

the solutions are very sensitive to the actual target 
distribution.  For radars along many political 

borders, it may not be possible to obtain any data at 
all from one side of the line joining the two sites. 

Given this situation, it is obvious that a new 

approach to system registration is needed.  The basic 

objective of this research is to develop a technique 

for registration with the following characteristics- 

The effect of systematic errors is to introduce 
biases into the estimation process.  Therefore, 
failure to register a multiple radar system 

adequately can result in varying degrees of 

performance degradation, depending on the magnitude 
of the error or bias with respect to the random 

measurement errors and the tracking gates.  The level 

of degradation ranges from the formation of multiple 
redundant tracks for a single aircraft to reduced   ' 

track accuracy and stability, or simply the loss of 

the benefits of multiple radar tracking by reducing 
the system, in effect, to a single radar tracking 
system. ö 

Insensitive to target distribution, 

- Applicable to fixed site, mobile and airborne 
sensor systems, 

- Provide alternative solution sets depending 
on the need, 

- Provide a quality estimate for the solution 
set, and 

Be based on a recognized principle of 
optimality. 



U.     Bias Estimation 
5.1  Covariance Analyses. 

Fisher, et. al, suggest (Ref. [1], p. 17) three 
alternative approaches; specifically, the generalized 
linear least-squares estimation (GLSE) technique and 
two numerical optimization methods, one based on a 
grid search technique and the other on Powell's 
method for steepest descent.  The GLSE is dismissed 
for computational reasons, and the grid search 
approach is dismissed in favor of Powell's method 
because of slow convergence. 

Commercial array processors or special purpose 
co-processors are now available which are capable of 
performing the large scale matrix operations required 
by the GLSE approach (see Ref. [2]).  Consequently, 
the GLSE approach is reconsidered in this paper.  The 
technique developed by Wax in Ref. [3] can be applied 
to formulate the generalized Gauss-Markov problem. 

The approach suggested by Wax is to formulate the 
difference dP in the reported positions as a function 
of the set of measured variables Z (i.e., 
observations) and the set of biases B (i.e., 
parameters) to be estimated:  dP = F(Z,B).  Following 
the usual linearization technique, but with the roles 
of the actual values and estimators reversed, the 
vector equation for position difference can be 
transformed in the classical Gauss-Markov GLSE model 
(see Ref. [2]):  X*B + E = Y, where X is a matrix of 
known parameters, E is the vector of measurement 
errors, and Y is the measurement vector. 

The solution of the GLSE Problem above is simply 

B = (Cov) * XT * V-1 * Y 

The GLSE approach was developed for three 
distinct solution sets; these were the following 

Two azimuth offset biases, 
Two range offset biases, and 
Two range and two azimuth offset biases. 

In the case of the "two azimuth bias" solution, 
it is assumed that there is a potential azimuth bias 
at each of the two radars, which are called the 
master and subordinate for convenience; it is assumed 
further that there are no range biases at either of 
the two radars.  For the "two range bias" solution, 
the analogous assumptions were used.  The "two 
range/two azimuth bias" solution is that derived in 
detail in the appendix. 

The covariance matrices for the three alternative 
solutions sets were analyzed with respect to the 
number of samples (that is, targets) used in the 
solution and the distribution of the targets in the 
(x,y)-plane.  The results of the analysis with 
respect to the sample size are shown in Figures 3, h 
and 5 for the sensor/target geometries illustrated in 
Figure 2.  For these analyses, the standard 
deviations of the random range and azimuth 
measurement errors at both radars were assumed to be 
0.125 nmi. in range and 0.18 degree (approximately 
3.0 milli-radians) in azimuth.  These statistics are 
typical of modern air defense and air traffic control 

radars. 

where (Cov) = (XT * V"1 * X)-1 is the covariance 

matrix for the estimate B of B. 

The difficult part of the formulation is to 
develop a representation for the covariance matrix V 
of the measurement error.  However, Fischer, et. al., 
provide a framework for the derivation in Appendix D 
of Ref. [1].  The details of the derivation of the 
solution for two range and two azimuth biases are 
provided in the appendix of this paper. 

In general the GLSE approach requires a 
capability to perform arithmetic with large 
matrices.  For this application, however, the problem 
may be greatly simplified using the independence of 
the measurements, both between radars and over the 
set of targets.  As shown in the appendix, the 
covariance matrix V for the error term E is a 
block-diagonal matrix; the dimension of the 
individual blocks is the same as the cardinality of 
the set Z for the individual samples.  For the 
registration problem, the measurement set Z contains 
four (4) independent measurements.  Therefore, the 
covariance matrix is the inverse of a sum of 4x4 
matrices, which can be computed easily.  (See the 
appendix.) 

MASTER 
RADAR 
(0, 0) 

■X  X  X X  X X X  X  X X / 
PARALLEL 
TARGET CASE 

PERPENDICULAR 
BISECTOR CASE 

SUBORDINATE 
RADAR 
(100,0) 

Figure 2.  Sensor/Target Geometry. The covariance analyses were 
conducted for targets distributed symmetrically along the perpendi- 
cular bisector of the line segment joining the two radars and for 
targets distributed along a line parallel to the line segment joining the 
two radars. 

5.     Numerical   Evaluation 

During   the  past  year   the  GLSE approach has  been 
formulated and  evaluated  at  Hughes  Aircraft  Company. 
The  evaluations  have  considered  both  theoretical 
covariance  analyses  and  simulation analyses   for 
comparison  of   the  GLSE   technique  with   the   JSS,   NATO 
and  the  ordinary  LSE   techniques.     Some  of   the major 
results  of   these  evaluations  are  presented below. 

The  ratio of   the  standard deviation of   the 
azimuth- bias  estimate   to   the  standard  deviation of 
the   (random)  azimuth measurement  error  is  plotted  in 
Figure  3.     From  the  graph,   approximately  125  samples 
are  required  in order   to  obtain a  bias-to-measurement 
ratio  of  0.10,  which will  ensure   that any system 
track  inaccuracies  are  due   to   the  random errors 
rather  than  the  systematic  or bias  errors. 



by the positive slopes for each curve on the graph. 
If there are no range biases, however, these 
(azimuth-only) solutions will be somewhat more 
accurate than the JSS and the GLSE-2 solutions. 

RADAR 
(0, 100)     I 

S\    51 TARGETS 
|-^-100 nmi *- 

}    V-T 
1    =50 

—y-— T    (o,o) 

Y - TARGET 
= 50 nmi 

FIXED AZIMUTH BIAS = 
0.500 DEGREES 

TRILATERATION 

 X  
GAUSS-MARKOV (2) 
(2 AZIMUTH AND 
2 RANGE) 

GAUSS-MARKOV (1) 
(2 AZIMUTH ONLY) 

-0- 
JSS 

—o- 
NATO 

LEAST 
SQUARES 
AZIMUTH 
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Figure 6.  RMS Azimuth Bias Estimation Error versus Range Bias. 
The JSS and the GSLE-2 algorithms solve for range biases and, 
therefore, are insensitive to range biased data. The GLSE-2 
algorithm can achieve a 50% reduction in estimation error with 
respect to the JSS approach. 

The  performance of   the  range bias  estimation 
techniques   is  shown  in Figure   7 versus  an actual 
azimuth bias.     As  was   the  case with azimuth-only 
solutions,   the  presence  of  a bias  which  is  assumed  to 
be non-existent,  will  degrade  performance  severely. 
Also,   as  before,   the  GLSE-2 algorithms  can achieve  a 
2-to-l   reduction of   the  standard  deviation of   the 
estimation error with  respect  to   the  JSS  method. 

0.00 .1 .2 .3 .4 .5 

AZIMUTH BIAS ^ 0.088, 0.176, 0.264 (DEGREES) 

Figure 7. RMS Range Bias Estimation Error Versus Azimuth Bias. 
The range-only GSLE technique is very sensitive to azimuth biases 

but is still preferred the JSS method when the magnitude of the 

azimuth bias is less than 0.20 degree. 

Based on the data presented above and extensive 
analyses which were not included here because of the 
limited space, the following statements summarize rhe 
conclusions of the IR&D work conducted by Hughes 
Aircraft Company over the past two years.  In 
general, the GLSE approach exhibits modest CPU 
requirements; the algorithm is certainly practical as 
an off-line or background capability.  More 
importantly, the GLSE approach is less sensitive to 
sensor/target geometry than any of the other 
registration approaches, particularly the JSS 
approach.  In most cases, the GLSE algorithms can 
achieve satisfactory registration accuracies with 50 
to 100 point-pairs rather than the 200 often required 
by the JSS or NATO algorithms. 

References 

1. W. L. Fischer, C. E. Muehe and A.G. Cameron, 
Registration Errors in a Netted Air Surveillance 
System; MIT Lincoln Laboratory Technical Note 

1980-40, 2 Sept. 1980. 

2. T. W. Anderson:  An Introduction of Multivariate 
Statistical Analysis; John Wiley & Sons, Inc., 

1958. 

3. Mati Wax:  "Position Location from Sensors with 
Position uncertainty," IEEE Trans, on Aerospace 
and Electronic Systems, Vol. AES-19, No. 5 
(Sept., 1983). 

Appendix:  Mathematical Development 

In the following derivation, assume that a master 
radar R(l) is located at the origin of the coordinate 
system and that a subordinate radar R(2) is located 
at coordinates (u,v).  For this derivation, it is 
immaterial which radar is the master and which is the 
subordinate.  Also assume that there are N targets in 
the intersection of the respective fields of view, 
denoted by T(l), T(2), ... T(N).  (See Figure A.) 

The basic problem is to determine the range and 
azimuth biases at each radar from the measurements of 
the common targets T(l), T(2), ... T(N).  That is, it 

Figure A. Sensor Measurement Geometry. The registration 
algorithm must determine the system biases tor the measure- 

ment set X(k) = {r (l,k),6 (l.k).r (2, k), 0 (2,k)} . 
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Figure 3. Azimuth Bias Estimation Performance Versus Sample Size. 
The variance of the azimuth bias estimation error decreases as a func- 
tion of 1/N. where N is the number of samples. 

Similarly,   the  ratio  of   the  standard deviations 
of   the  range  bias  estimate  to   the  random  range 
measurement  error  is  plotted  in  Figure  l*.     From  the 
graph,   100   to  150  samples  are  required  in order  to 
obtain a  5—to—1   improvement  ratio.     Although  this   is 
not  as  dramatic  as   the   10-to-l  ratio  obtained  for  the 
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Figure 4." Range Bias Estimation Performance Versus Sample Size. 
The variance of the range bias estimation error decreases as a function 
of 1/N, where N is the number of samples. 

azimuth  case,   it will  be  adequate  for  target 
tracking.     As   is   the  case  for  the azimuth bias 
estimate,   the  variance  of   the  range bias  estimate  is 
approximately  inversely proportional   to  the number N 
of  samples. 
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Figure 5.  Range and Azimuth Bias Estimation Performance Versus 
Sample Size.  The performance for this case is moderately sensitive 
to target distribution; however a sample size of 200 will be adequate 
of tracking in any case. 

5.2 Simulation Results 

In addition to the covariance analyses described 
above, simulation analyses were conducted, primarily 
in order to compare the GLSE algorithms with other 
techniques (for which covariance estimates are not 
available).  A secondary goal of the analyses were to 
determine the sensitivity of the current registration 
assumptions of the techniques.  For example, the NATO 
registration algorithm assumes that there are no 
range biases at the radars; if there are range 
biases, then the algorithm will translate them into 
azimuth biases. 

For the simulation data presented in Figures 6 
and 7 below, the sensor/target geometry is similar to 
the "perpendicular bisector case" in the preceding 
section except that the targets are not symetrically 
distributed along the bisector.  For this analysis, 
all of the targets are in the first quadrant of the 
coordinate system. 

In Figure 6, six algorithms for estimation of two 
azimuth biases are compared in terms of the RMS error 
between the estimated bias and the true bias, which 
was 0.50 degree.  The algorithms included the two 
relevant versions of the GSLE (or Gauss-Markov) 
approach discussed in Section 5.1; a trilateration 
technique which uses only the range measurements from 
each radar; the JSS method; the NATO (or 407L) 
method; and an ordinary least-squares algorithm.  The 
NATO algorithm differs from the ordinary LSE 
algorithm only to the extent that the NATO algorithm 
solves for an azimuth bias and a position bias of the 
subordinate radar; the position bias is then 
translated into an azimuth bias at the master radar. 

Finally, the results 
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is necessary to estimate the azimuth biases a(l) and 
a(2) at R(l) and R(2), respectively, and the range 
biases b(l) and b(2) at R(l) and R(2).  Denote the 

set of biases by 

|3 = { a(l), a(2), b(l), b(2) } 

For each target T(k), define the set of radar 
measurements 

Y (k) = { r(l,k), 6(1,k), r(2,k) 6(2,k)} 

(1) 

(2) 

where r(l,k), 6(1,k) and r(2,k), 6(2,k) denote the 
range and azimuth measurements from radar R(l) and 
radar R(2), respectively. 

For each set of measurements, Y(k), the 
observations are the separations in the (x,y)-plane 
of the reported target positions.  These are: 

dx(k) = [r(l,k) + b(l)] cos [6(1,k) + a(l)] - u 

- [r (2,k) + b(2)] cos [9(2,k) + a(2)]     (3) 

dy(k) = [r(l,k) + b(l)] sin [6(1,k) + a(D] - v 

- [r(2,k) + b(2)] sin [9(2,k) + a(2)]      (4) 

Equations (3) and (4) above relate the set (3 of 
parameters to be estimated to the set of measurements 
y(k) and the vector of observations [dx(k), dy(k)]. 
However, these functional relationships are non-linear. 

In order to apply the Gauss-Markov theory of 
Generalized Least Squares Estimation (GLSE), it will be 
necessary to represent the observations as a linear 
function of the parameters to be estimated, namely 
|3.  This can be accomplished by defining a function f 
as follows: 

f(Y(k), ß) = [dx(k), dy(k)]T 

where the superscript T denotes the transposition of 
the vector (or, later, the matrix).  Further, let 
41'(k) and ß' denote the actual measurement sets 
and an initial estimate of |3, respectively.  Now, 
Taylor's Theorem can be used to approximate the 
function f at the true values of y(k) and |3 in 
terms of the measurements >f'(k) and the initial 
estimate 3': 

f(Y(k), (3) = f(f(k), 13') 
+ VR f(Y'(k), |3') (13 - 13') 
+ Vy fOf'(k), f3') [y(k) - Y'(k)] 

where 

F(k) = Vyftydc), (3'] 

5 [dx(k)]    5[dx(k)] 

(5) 

(6) 

S[dx(k) ] 6[dx(k)] 

Sr(l,k)     66(1,k)   6r(2,k) 59(2,k) 

S[dy(k)j    S[dy(k)3  S[dy (k)] S[dy(k)] 

6r(l,k)    66(1,k)    6r(2,k) 66(2,k) 

If the errors [<|<(k) - v|>'(k)] and (|3 - 13') are 
sufficiently small that the higher order terms can be 
neglected, then the approximation in (5) may be regarded as 
an equality.  Also, note that 

f(Y(k), ß) = 0 (8) 

by definition; therefore: 

G(k)ß + F(k) dy'(k) = G(k) ß' - f(v|»'(k), ß')    (9) 

where d<|/'(k) = <f'(k) - Y(k).  Note that the matrix G(k) 
is a matrix of known parameters, F(k) dy'(k) is the 
error due to the measurement noise, and that the terms 
on the right-hand side of equation (9) now represent 

the observations. 

With all of this notation and the approximation of 
equation (5), equations (3) and (4) may now be 
reformulated as the classical Gauss-Markov model of 

GLSE theory: 

X ß + e = Y 

by setting 

(10) 

(11) X = [G(D, G(2), ... G(N)] 

e = [F(l) dY'(l), F(2) dY'(2), ...F(N)dY' (N)]T (12) 

Y = [G(l) ß' - f(Y'(l), ß'), G(2) ß' - 

f(c'(2), ß'),   G(N) ... ]T        (13) 

Note that X is a 2Nx4 matrix, e is 2N vector, and 
that the observation vector is also of dimension 2N. 

The last step in this application of the 
Gauss-Markov model is to develop the covariance 
Zc  matrix for the error vector s.  To this 
end, define: 

ZE= E[es
T] = diag {F(k) E[dY')(d.K)T] FT(k)}    (14) 

where the notation "diag" indicates a diagonal matrix 
with the non-zero terms enclosed in the brackets. 
Note that 

y E [(dr)(dY')T] = diag [oR
2
ay  oQ

2
ay  aRJ2), a^Jds; 

Further, note that F(k) is a 2 x 4 matrix and that ly 
is a 4 x 4 matrix; therefore 

Zk  = F(k) Zy  FT(k) 

is a 2 x 2 matrix.  This implies that Zc 

(16) 

is a block-diagonal matrix of the form 

Zc  =  diag \zx,   Z2,   ■   ■   ■   Z  „1. (17) 

The solution of the Gauss-Makrov equation (10) is 
simply 

and 

G(k)  - Vßf(q,'(k), ß') 
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T  -1 T  -1 
ß =  (XT 1/ X)    X1 Z   L   Y (18) 

where 

Cov  (ß) = (XT Z£
l  X) l. 

Since Zt   is a 2NX2N block-diagonal matrix, it 
follows that 

(19) 



T '-1    NT   -1 
X I       X = I  G (k) Z    G(k) (20) 

e   k=l 

where the individual terms of the sum are hXh 
matrices.  Similarly 

-INT    -1 
XlY = J  G (k) I.    [G(k)(J' - fCyCk),!?')]        (21) 

E   k=l       k 

If the individual radar measurement errors are 
normally distributed, then diC'(k) is a normally 
distributed vector; and F(k) dy'(k) is a linear 
combination of normal variables and is, therefore, 

normally distributed.  Thus 41 is N(0,Ey). 

Equation (18) is the minimum variance solution under 
any error distribution.  For the normal distribution 

(i.e., E ~ N(0, EE)), [5 is also the maximum 
likelihood solution.  By these criteria, |5 in (18) 
is the "best" solution to the problem as defined by 
equation (10): 

Y = X |5 + c 

where the error term e is distributed as N(0,£e), 
X is a matrix of known parameters, and Y is the 
vector of observations. 
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